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ABSTRACT

Eigenvalues and eigenfunctions of linear operators are important to many areas of ap-

plied mathematics. The ability to approximate these quantities numerically is becoming

increasingly important in a wide variety of applications. This increasing demand has fu-

eled interest in the development of new methods and software for the numerical solution

of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods

and software, along with the dramatically increased computational capabilities now avail-

able, has enabled the solution of problems that would not even have been posed �ve or ten

years ago. Until very recently, software for large-scale nonsymmetric problems was virtually

non-existent. Fortunately, the situation is improving rapidly.

The purpose of this article is to provide an overview of the numerical solution of large-

scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov

subspace projection methods. The well-known Lanczos method is the premier member of

this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case.

A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted

Arnoldi Method is presented here in some depth. This method is highlighted because of its

suitability as a basis for software development.

1This work was supported in part by NAS1-19480 while the author was in residence at the Institute for

Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,

VA 23681-0001.

i



1. Introduction

Discussion begins with a brief synopsis of the theory and the basic iterations suitable

for large-scale problems to motivate the introduction of Krylov subspaces. Then the Lanc-

zos/Arnoldi factorization is introduced, along with a discussion of its important approx-

imation properties. Spectral transformations are presented as a means to improve these

approximation properties and to enhance convergence of the basic methods. Restarting is

introduced as a way to overcome intractable storage and computational requirements in the

original Arnoldi method. Implicit restarting is a new sophisticated variant of restarting.

This new technique may be viewed as a truncated form of the powerful implicitly shifted

QR technique that is suitable for large-scale problems. Implicit restarting provides a means

to approximate a few eigenvalues with user speci�ed properties in space proportional to nk,

where k is the number of eigenvalues sought, and n is the problem size.

Generalized eigenvalue problems are discussed in some detail. They arise naturally in

PDE applications and they have a number of subtleties with respect to numerically stable

implementation of spectral transformations.

Software issues and considerations for implementation on vector and parallel computers

are introduced in the later sections. Implicit restarting has provided a means to develop

very robust and e�cient software for a wide variety of large-scale eigenproblems. A public

domain software package called ARPACK has been developed in Fortran 77. This package

has performed well on workstations, parallel-vector supercomputers, distributed-memory

parallel systems and clusters of workstations. The features of this package along with some

applications and performance indicators occupy the �nal section of this paper.

2. Eigenvalues, Power Iterations, and Spectral Transformations

A brief discussion of the mathematical structure of the eigenvalue problem is necessary

to �x notation and introduce ideas that lead to an understanding of the behavior, strengths

and limitations of the algorithms. In this discussion, the real and complex number �elds are

denoted by R and C, respectively. The standard n-dimensional real and complex vectors

are denoted by Rn and Cn and the symbols Rm�n and Cm�n will denote the real and

complex matrices m rows and n columns. Scalars are denoted by lower case Greek letters,

vectors are denoted by lower case Latin letters and matrices by capital Latin letters. The

transpose of a matrix A is denoted by AT and the conjugate-transpose by AH . The symbol,

k � k will denote the Euclidean or 2-norm of a vector. The standard basis of Cn is denoted

by the set fejg
n
j=1.

The set of numbers �(A) � f� 2 C : rank(A � �I) < n)g is called the spectrum of A.

The elements of this discrete set are the eigenvalues of A and they may be characterized as

the n roots of the characteristic polynomial pA(�) � det(�I � A). Corresponding to each

distinct eigenvalue � 2 �(A) is at least one nonzero vector x such that Ax = x�. This vector

is called a right eigenvector of A corresponding to the eigenvalue �. The pair (x; �) is called

an eigenpair. A nonzero vector y such that yHA = �yH is called a left eigenvector. The

multiplicity na(�) of � as a root of the characteristic polynomial is the algebraicmultiplicity

and the dimension ng(�) of Null(�I � A) is the geometric multiplicity of �. A matrix is

defective if ng(�) < na(�) and otherwise A is nondefective. The eigenvalue � is simple if

na(�) = 1.
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A subspace S of Cn�n is called an invariant subspace of A if AS � S. It is straightfor-

ward to show if A 2 Cn�n , X 2 Cn�k and B 2 Ck�k satisfy

AX = XB; (1)

then S � Range(X) is an invariant subspace of A. Moreover, if X has full column rank

k then the columns of X form a basis for this subspace and �(B) � �(A). If k = n then

�(B) = �(A) and A is said to be similar to B under the similarity transformation X .

A is diagonalizable if it is similar to a diagonal matrix and this property is equivalent to

A being nondefective.

An extremely important theorem to the study of numerical algorithms for eigenproblems

is the Schur decomposition. It states that every square matrix is unitarily similar to an

upper triangular matrix. In other words, for any linear operator on Cn, there is a unitary

basis in which the operator has an upper triangular matrix representation.

Theorem 1 (Schur Decomposition). Let A 2 Cn�n. Then there is a unitary matrix Q and

an upper triangular matrix R such that

AQ = QR: (2)

The diagonal elements of R are the eigenvalues of A.

From the Schur decomposition, the fundamental structure of Hermitian and normal matrices

is easily exposed:

Lemma 2 A matrix A 2 Cn�n is normal ( AAH = AHA ) if and only if A = Q�QH with

Q 2 Cn�n unitary and � 2 Cn�n diagonal. A matrix A 2 Cn�n is Hermitian ( A = AH ) if

and only if A = Q�QH with Q 2 Cn�n unitary and � 2 Rn�n diagonal. In either case, the

diagonal entries of � are the eigenvalues of A and the columns of Q are the corresponding

eigenvectors.

The proof follows easily through substitution of the Schur decomposition in place of A in

each of the de�ning relationships. The columns of Q are called Schur vectors in general and

these are eigenvectors of A if and only if A is normal.

For purposes of algorithmic development this structure is fundamental. In fact, the well

known Implicitly Shifted QR-Algorithm (Francis, 1961) is designed to produce a sequence

of unitary similarity transformations Qj that iteratively reduce A to upper triangular form.

This algorithm begins with an initial unitary similarity transformation V of A to the con-

densed form AV = V H , where H is upper Hessenberg (tridiagonal in case A = AH ). Then

the following iteration is performed:

where Q is unitary and R is upper triangular (i.e., the QR factorization of H � �I ). It

is easy to see that H is unitarily similar to A throughout the course of this iteration. The

iteration is continued until the subdiagonal elements of H converge to zero, i.e. until a

Schur decomposition has been (approximately) obtained. In the standard implicitly shifted

QR-iteration, the unitary matrix Q is never actually formed. it is computed indirectly as
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Algorithm 1: Implicitly Shifted QR-iteration

Input: (A;V;H ) with AV = V H;V HV = I , H upper Hessenberg;

For j = 1; 2; 3; ::: until convergence,

(a1.1) Select a shift � �j

(a1.2) Factor [Q;R] = qr(H � �I) ;

(a1.3) H  QHHQ ; V  V Q;

End For

a product of 2 � 2 Givens or 3 � 3 Householder transformations through a \bulge chase"

process. The elegant details of an e�cient and stable implementation would be too much

of a digression here. They may be found in (Golub and Van Loan, 1983). The convergence

behavior of this iteration is fascinating. The columns of V converge to Schur vectors at

various rates. These rates are fundamentally linked to the simple power method and its

rapidly convergent variant, inverse iteration (see Watkins and Elsner, 1991).

Despite the extremely fast rate of convergence and the e�cient use of storage, the

implicitly shifted QR method is not suitable for large-scale problems and it has proved to be

extremely di�cult to parallelize. Large-scale problems are typically sparse or structured so

that a matrix-vector product w  Av may be computed with time and storage proportional

to n rather than n2 . A method based upon full similarity transformations quickly destroys

this structure. Storage and operation counts become order n2. Hence, there is considerable

motivation for methods that only require matrix-vector products with the original A.

2.1. Single vector power iterations

Probably the oldest algorithm for approximating eigenvalues and corresponding eigen-

vectors of a matrix is the power method. This method is an important tool in its own right

when conditions are appropriate. It is very simple and only requires matrix-vector products

along with two vectors of storage. In addition to its role as an algorithm, the method is

central to the development, understanding, and convergence analysis of all of the iterative

methods discussed here.

Algorithm 2: The Power Method

Input: (A; vo )

Put v = vo=kvok1;

For j = 1; 2; 3; ::: until convergence,

(a2.1) w Av;

(a2.2) � = wHv

vHv
;

(a2.3) i = i max (w);

(a2.4) v v=(eTi w) ;

End For
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At Step (a2.3), i is the index of the element of w with largest absolute value. It is easily

seen that the contents of v after k-steps of this iteration will be the vector

vk = (
1

eTi A
kvo

)Akvo = (
�k

eTi A
kvo

)(
1

�k
Akvo)

for any nonzero scalar �k . In particular, this iteration may be analyzed as if the vectors had

been scaled by �k = �k1 at each step, with �1 an eigenvalue of A with largest magnitude.

If A is diagonalizable with eigenpairs f(xj ; �j); 1 � j � ng and vo has the expansion

vo =
Pn

j=1 xjj in this basis then

1

�k1
Akvo =

1

�k1

nX
j=1

Akxjj =
nX

j=1

xj(�j=�1)
kj : (3)

If �1 is a simple eigenvalue then �
�j

�1

�k
! 0; 2 � j � n:

It follows that vk ! x1=(e
T
i x1), where i = i max (x1), at a linear rate with a convergence

factor of j�2
�1
j .

While the power method is useful, it has two obvious drawbacks. Convergence may be

arbitrarily slow or may not happen at all. Only one eigenvalue and corresponding vector

can be found.

2.2. Spectral transformations

The basic power iteration may be modi�ed to overcome these di�culties. The most fun-

damental modi�cation is to employ a spectral transformation. Spectral transformations

are generally based upon the following:

Let A 2 Cn�n have an eigenvalue � with corresponding eigenvector x.

1. Let p(�) = 0 + 1� + 2�
2 + . . . + k�

k. Then p(�) is an eigenvalue of the matrix

p(A) = 0I+ 1A+ 2A
2+. . .+ kA

k with corresponding eigenvector x (i.e. p(A)x =

xp(�) ).

2. If r(�) = p(�)
q(�)

, where p and q are polynomials with q(A) nonsingular, de�ne r(A) =

[q(A)]�1p(A). Then r(�) is an eigenvalue of r(A) with corresponding eigenvector x.

It is often possible to construct a polynomial or rational function �(�) such that

j�(�i)j � j�(�j)j for 1 � j � n; j 6= i;

where �i is an eigenvalue of particular interest. This is called a spectral transformation since

the eigenvectors of the transformed matrix �(A) remain the same, but the corresponding

eigenvalues �j are transformed to �(�j). Applying the power method with �(A) in place

of A will then produce the eigenvector q � xi corresponding to �i at a linear convergence
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rate with a convergence factor of j
�(�j)

�(�i)
j � 1. Once the eigenvector has been found, the

eigenvalue � � �i may be calculated directly from a Rayleigh Quotient � = qHAq=qHq.

2.3. Inverse iteration

Spectral transformation can lead to dramatic enhancement of the convergence of the

power method. Polynomial transformations may be applied using only matrix-vector prod-

ucts. Rational transformations require the solution of linear systems with the transformed

matrix as the coe�cient matrix. The simplest rational transformation turns out to be

very powerful and is almost exclusively used for this purpose. If � =2 �(A) then A � �I is

invertible and �([A � �I ]�1) = f1=(� � �) : � 2 �(A)g . This transformation is very suc-

cessful since eigenvalues near the shift � are transformed to extremal eigenvalues which are

well separated from the other ones while the original extremal eigenvalues are transformed

near the origin. Hence under this transformation the eigenvector q corresponding to the

eigenvalue of A that is closest to � may be readily found and the corresponding eigenvalue

may obtained either through the formula � = � + 1=�, where � is the eigenvalue of the

transformed matrix, or it may be calculated directly from a Rayleigh quotient.

Algorithm 3: The Inverse Power Method

Input: (A; vo; � )

Put v = vo=kvok1;

For j = 1; 2; 3; ::: until convergence,

(a3.1) Solve (A� �I)w = v;

(a3.2) � = �+ wHv

wHw
;

(a3.3) i = i max (w);

(a3.4) v v=(eTi w) ;

End For

Observe that the formula for � at Step (a3.2) is equivalent to forming � = (wHAw)=(wHw)

so an additional matrix vector product is not necessary to obtain the Rayleigh quotient esti-

mate. The analysis of convergence remains entirely in tact. This iteration converges linearly

with the convergence factor
j�1 � �j

j�2 � �j
;

where the eigenvalues of A have been re-indexed so that j�1 � �j < j�2 � �j � j�3 � �j �

::: � j�n � �j. Hence, the convergence becomes faster as � gets closer to �1.

This result is encouraging but still leaves us wondering how to select the shift � to be

close to the unknown eigenvalue we are trying to compute. In many applications the choice

is apparent from the requirements of the problem. It is also possible to change the shift

at each iteration at the expense of a new matrix factorization at each step. An obvious

choice would be to replace the shift with the current Rayleigh quotient estimate. This

method, called Rayleigh Quotient (RQ) iteration, has very impressive convergence rates

indeed. Rayleigh Quotient Iteration converges at a quadratic rate in general and at a cubic
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rate on Hermitian problems. For a more detailed discussion of the eigenvalue problem and

basic algorithms see (Golub and Van Loan, 1983, Stewart, 1973, and Wilkinson, 1965).

3. Krylov Subspaces and Projection Methods

Although the rate of convergence can be improved to an acceptable level through spec-

tral transformations, power iterations are only able to �nd one eigenvector at a time. If

more vectors are sought, then various deation techniques (such as orthogonalizing against

previously converged eigenvectors) and shift strategies must be introduced. One alternative

is to introduce a block form of the simple power method which is often called subspace iter-

ation. This important class of algorithms has been developed and investigated in (Stewart,

1973). Several software e�orts have been based upon this approach (Bai and Stewart, 1992,

Du� and Scott, 1993, and Stewart and Jennings, 1992). However, there is another class

of algorithms called Krylov subspace projection methods that are based upon the intricate

structure of the sequence of vectors naturally produced by the power method.

An examination of the behavior of the power sequence as exposed in equation (3) hints

that the successive vectors produced by a power iteration may contain considerable infor-

mation along eigenvector directions corresponding to eigenvalues other than the one with

largest magnitude. The expansion coe�cients of the vectors in the power sequence evolve

in a very structured way. Therefore, linear combinations of the these vectors might well be

devised to expose additional eigenvectors. A single vector power iteration simply ignores

this additional information, but more sophisticated techniques may be employed to extract

it.

If one hopes to obtain additional information through various linear combinations of the

power sequence, it is natural to formally consider the Krylov subspace

Kk(A; v1) = Span fv1; Av1; A
2v1; . . . ; A

k�1v1g

and to attempt to formulate the best possible approximations to eigenvectors from this

subspace.

It is reasonable to construct approximate eigenpairs from this subspace by imposing a

Galerkin condition: A vector x 2 Kk(A; v1) is called a Ritz vector with corresponding Ritz

value � if the Galerkin condition

< w;Ax � x� >= 0 ; for all w 2 Kk(A; v1)

is satis�ed. There are some immediate consequences of this de�nition: Let W be a matrix

whose columns form an orthonormal basis for Kk � Kk(A; v1). Let P = WWH denote the

related orthogonal projector onto Kk and de�ne Â � PAP = WBWH , where B � WHAW .

It can be shown that

Lemma 3 For the quantities de�ned above:

1. (x; �) is a Ritz-pair if and only if x = Wy with By = y� .

2. k(I �P)AWk = k(A� Â)Wk � k(A�M)Wk

for all M 2 Cn�n such that MKk � Kk.
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3. The Ritz-pairs (x; �) and the minimum value of k(I �P)AWk are independent of the

choice of orthonormal basis W .

Item (1) follows immediately from the Galerkin condition since it implies that 0 = WH(AWy�

Wy�) = By � y�. Item (2) is easily shown using invariance of k � k under unitary transfor-

mations. Item (3) follows from the fact that V is an orthonormal basis for Kk if and only if

V = WQ for some k � k unitary matrix Q. With this change of basis Â = V HV H , where

H = V HAV = QHBQ. Since H is unitarily similar to B, the Ritz-values remain the same

and the Ritz-vectors are of the form x = Wy = V ŷ, where ŷ = QHy.

These facts are actually valid for any k dimensional subspace S in place of Kk. The

following properties are consequences of the fact that every w 2 Kk is of the form w =

�(A)v1 for some polynomial � of degree less than k.

Lemma 4 For the quantities de�ned above:

1. If q is a polynomial of degree less than k then

q(A)v1 = q(Â)v1 = Wq(B)z1;

where v1 = Wz1, and if the degree of q is k then

Pq(A)v1 = q(Â)v1:

2. If p̂(�) � det(�I � B) is the characteristic polynomial of B then p̂(Â) = 0 and

kp̂(A)v1k � kq(A)v1k for all monic polynomials of degree k.

3. If y is any vector in Ck then AWy �WBy = p̂(A)v1 for some scalar .

4. If (x; �) is any Ritz-pair for A with respect to Kk then

Ax � x� = p̂(A)v1

for some scalar .

This discussion follows the treatment given by Saad in (Saad, 1992) and in his earlier

papers. While these facts may seem esoteric, they have important algorithmic consequences.

First, it should be noted that Kk is an invariant subspace for A if and only if v1 = V y,

where AV = V R with V HV = Ik and R is k� k upper triangular. Also, Kk is an invariant

subspace for A if v1 = Xy, where X 2 Cn�k and AX = X� with � diagonal. This follows

from items (2) and (3) since there is a k-degree monic polynomial q such that q(R) = 0 and

hence kp̂(A)v1k � kq(A)v1k = kV q(R)yk = 0. (A similar argument holds when v1 = Xy).

Secondly, there is some algorithmic motivation to seek a convenient orthonormal basis

V = WQ that will provide a means to successively construct these basis vectors. It is

possible to construct a k�k unitary Q using standard Householder transformations such that

v1 = V e1 and H = QHBQ is upper Hessenberg with non-negative subdiagonal elements.

It is also possible to show using item (3) that in this basis,

AV = V H + feTk ; where f = p̂(A)v1
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and V Hf = 0 follows from the Galerkin condition.

The �rst observation shows that if it is possible to obtain a v1 as a linear combination

of k eigenvectors of A then f = 0 and V is an orthonormal basis for an invariant subspace

of A, and that the Ritz values �(H) � �(A) and corresponding Ritz vectors are eigenpairs

for A. The second observation leads to the Lanczos/Arnoldi process (Arnoldi, 1951 and

Lanczos, 1950).

4. The Arnoldi Factorization

De�nition : If A 2 Cn�n then a relation of the form

AVk = VkHk + fke
T
k ;

where Vk 2 C
n�k has orthonormal columns, V H

k fk = 0 and Hk 2 C
k�k is upper Hessenberg

with non-negative subdiagonal elements is called a k-step Arnoldi Factorization of A. If A

is Hermitian then Hk is real, symmetric and tridiagonal and the relation is called a k-step

Lanczos Factorization of A. The columns of Vk are referred to as the Arnoldi vectors or

Lanczos vectors respectively.

The development of this factorization has been purely through the consequences of the

orthogonal projection imposed by the Galerkin conditions. A more straightforward but less

illuminating derivation is to simply truncate the reduction of A to Hessenberg form that

precedes the implicitly shifted QR-iteration by equating the �rst k columns on both sides

of the complete reduction AV = V H . An alternative way to write this factorization is

AVk = (Vk; vk+1)

 
Hk

�ke
T
k

!
where �k = kfkk and vk+1 =

1

�k
fk :

This factorization may be used to obtain approximate solutions to a linear systemAx = b

if b = v1�o. The purpose here is to investigate the use of this factorization to obtain ap-

proximate eigenvalues and eigenvectors. The discussion of the previous section implies that

Ritz pairs satisfying the Galerkin condition are immediately available from the eigenpairs

of the small projected matrix H .

If Hky = y� then the vector x = Vky satis�es

kAx� x�k = k(AVk � VkHk)yk = j�ke
T
k yj:

The number j�ke
T
k yj is called the Ritz estimate for this the Ritz pair (x; �) as an approxi-

mate eigenpair for A. Observe that if (x; �) is a Ritz pair then

� = yHHky = (Vky)
HA(Vky) = xHAx

is a Rayleigh Quotient (assuming kyk = 1) and the associated Rayleigh Quotient residual

r(x) = Ax� x� satis�es

kr(x)k = j�ke
T
k yj:

When A is Hermitian, this relation may be used to provide computable rigorous bounds on

the accuracy of the eigenvalues of H as approximations to eigenvalues of A; see (Parlett,
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1980). When A is non-Hermitian the possibility of non-normality precludes such bounds

and one can only say that the RQ-residual is small if j�ke
T
k yj is small. However, in either

case, if fk = 0 these the Ritz pairs become exact eigenpairs of A.

This factorization may be advanced one step at the cost of a (sparse) matrix-vector

product involving A and two dense matrix vector products involving V T
k and Vk . The

explicit steps needed to form a k-Step Arnoldi factorization are shown in Algorithm 4.

Algorithm 4: The k-Step Arnoldi Factorization

Input: (A; v)

Put v1 = v=kvk; w = Av1;�1 = vH1 w;

Put f1  w� v1�1 ; V  (v1); H  (�1);

For j = 1; 2; 3; :::k,

(a4.1) �j = kfjk; vj+1  fj=�j;

(a4.2) Vj+1  (Vj; vj+1); Ĥj  

 
Hj

�je
T
j

!
;

(a4.3) z  Avj+1;

(a4.4) h V T
j z; fj+1  z � Vj+1h;

(a4.5) Hj+1  (Ĥj; h);

End For

In exact arithmetic, the columns of V form an orthonormal basis for the Krylov subspace

and H is the orthogonal projection of A onto this space. In �nite precision arithmetic, care

must be taken to assure that the computed vectors are orthogonal to working precision.

The method proposed by Daniel, Gragg, Kaufman and Stewart (DGKS) in (Daniel et al.,

1976) provides an excellent way to construct a vector fj+1 that is numerically orthogonal

to Vj+1. It amounts to computing a correction

s = V T
j+1fj+1; fj+1  fj+1 � Vj+1s; h h+ s;

just after Step (a4.4) if necessary. A simple test can be devised to avoid this DGKS correc-

tion if it is not needed.

The dense matrix-vector products at Step (a4.4) and also the correction may be ac-

complished using Level 2 BLAS. This is quite important for performance on vector, and

parallel-vector supercomputers. The BLAS operation GEMV is easily parallelized and

vectorized and has a much better ratio of oating point computation to data movement

(Dongarra et al., 1988 and Dongarra et al., 1991). The Modi�ed Gram-Schmidt Process

(MGS) is often used in the construction of Arnoldi factorizations. However, MGS will de�-

nitely not produce numerically orthogonal basis vectors in practice. Moreover, MGS cannot

be formulated in terms of Level 2 BLAS unless all of the vectors to be orthogonalized are

known in advance and this is not the case in the Arnoldi process. For these reasons, classical

Gram-Schmidt orthogonalization with the DGKS correction step is highly recommended.

The information obtained through this process is completely determined by the choice

of the starting vector. Eigen-information of interest may not appear until k gets very large.

9



In this case it becomes intractable to maintain numerical orthogonality of the basis vectors

Vk . Moreover, extensive storage will be required and repeatedly �nding the eigensystem of

H will become prohibitive at a cost of O(k3) ops.

Failure to maintain orthogonality leads to several numerical di�culties. In a certain

sense, the computation (or approximation) of the projection indicated at Step (a4.4) in a

way that overcomes these di�culties has been the main source of research activity in these

Krylov subspace projection methods. The computational di�culty stems from the fact that

kfkk = 0 if and only if the columns of Vk span an invariant subspace of A. When Vk \nearly"

spans such a subspace kfkk will be small. Typically, in this situation, a loss of signi�cant

digits will take place at Step (a4.4) through numerical cancellation unless special care is

taken (i.e., use of the DGKS correction).

It is desirable for kfkk to become small because this indicates that the eigenvalues of

H are accurate approximations to the eigenvalues of A. However, this \convergence" will

indicate a probable loss of numerical orthogonality in V . Moreover, if subsequent Arnoldi

vectors are not forced to be orthogonal to the converged ones then components along these

directions re-enter the basis via round-o� e�ects and quickly cause a spurious copy of the

previously computed eigenvalue to appear repeatedly in the spectrum of the projected

matrixH . The identi�cation of this phenomenon in the symmetric case and the �rst rigorous

numerical treatment is due to Paige (1971). There have been several approaches to overcome

this problem in the symmetric case. They include: (1) complete re-orthogonalization, which

may be accomplished through maintaining V in product Householder form (Walker, 1988)

or through the Modi�ed Gram-Schmidt processes with re-orthogonalization (Daniel et al.,

1976). (2) Selective re-orthogonalization, which has been proposed by Parlett and has been

heavily researched by him and his students. Most notably, the theses and subsequent papers

and computer codes of Scott and of Simon have developed this idea (Parlett and Scott, 1979,

Parlett, 1980, and Simon, 1984). (3) No re-orthogonalization, which has been developed

by Cullum and her colleagues. This last option introduces the almost certain possibility

of introducing spurious eigenvalues. Various techniques have been developed to detect and

deal with the presence of spurious eigenvalues (Cullum, 1978 and Cullum and Willoughby,

1981).

The appearance of spurious eigenvalues may be avoided through complete orthogonal-

ization of the Arnoldi (or Lanczos) vectors using the DGKS correction. Computational cost

has been cited as the reason for not employing this option. However, the cost will be rea-

sonable if one is able to �x k at a modest size and then update the starting vector v1 = Vke1
while repeatedly doing k-Arnoldi steps. This approach was introduced in (Karush, 1951)

and developed further by (Cullum and Donath, 1974) for the symmetric case. Saad (1980,

1984, and 1992) has developed explicit restarting for the nonsymmetric case. Restarting has

proven to have important consequences for the development of numerical software based

upon Arnoldi's method and this will be explored in the following section.

5. Restarting the Arnoldi Method

An unfortunate aspect of the Lanczos/Arnoldi process is that one cannot know in ad-

vance how many steps will be required before eigenvalues of interest are well approximated

by Ritz values. This is particularly true when the problem has a wide range of eigenvalues

10



but the eigenvalues of interest are clustered. For example, in computational chemistry,

problems are usually symmetric and positive de�nite and there is a wide range of eigenval-

ues varying over many orders of magnitude. Only the smallest eigenvalues are physically

interesting and they are typically clustered at the low end of the spectrum. Shift and invert

is usually not an option because of �ll in from the factorizations. Without a spectral trans-

formation, many Lanczos steps are required to obtain the smallest eigenvalues. In order to

recover eigenvectors, one is obliged to store all of the Lanczos basis vectors (usually on a

peripheral device) and to solve very large tridiagonal eigenvalue subproblems at each step.

In the Arnoldi process that is used in the non-Hermitian case, not only do the basis vectors

have to be stored, but the cost of the Hessenberg eigenvalue subproblem is O(k3) at the

k-th step.

5.1. Explicit restarting

An alternative has been proposed by Saad based upon the polynomial acceleration

scheme developed in (Manteu�el, 1978) for the iterative solution of linear systems. Saad

(1984) proposed to restart the iteration with a vector that has been preconditioned so that

it is more nearly in a k-dimensional invariant subspace of interest. This preconditioning

takes the form of a polynomial applied to the starting vector that is constructed to damp

unwanted components from the eigenvector expansion. The resulting algorithm takes the

form:

Algorithm 5: An Explicitly Restarted Arnoldi Method

Input: (A; v)

Put v1 = v=kvk;

For j = 1; 2; 3; ::: until convergence

(a5.1) Compute an m-step Arnoldi factorization

AVm = VmHm + fme
T
m with Vme1 = v1 ;

(a5.2) Compute �(Hm) and corresponding Ritz estimates

and halt if desired eigenvalues are well approximated.

(a5.3) Construct a polynomial  based upon �(Hm)

to damp unwanted components.

(a5.4) v1   (A)v1; v1  v1=kv1k ;

End For

The construction of the polynomial at Step (a5.3) may be guided by a priori information

about the spectrum of A or solely by information gleaned from �(Hm). A typical scheme is

to sort the spectrum of Hm into two disjoint sets 
w and 
u, with �(Hm) = 
w [
u. The

Ritz values in the set 
w are to be regarded as approximations to the \wanted" eigenvalues

of A and an open convex set Cu containing 
u with 
w\Cu = ; is to be regarded as a region

that approximately encloses the \unwanted" portion of the spectrum of A. The polynomial

 is then constructed to be as small in magnitude as possible on Cu when normalized, for

example, to take the value 1 at an element of 
w closest to @Cu. Chebyshev polynomials are

11



appropriate when Cu is taken to be an ellipse and this was the original proposal of Saad when

he adapted the Manteu�el idea to eigenvalue calculations. Another possibility explored by

Saad has been to take Cu to be the convex hull of 
u and to construct the polynomial  that

best approximates 0 on this set in the least squares sense. Both of these are based upon

well-known theory of polynomial approximation. The problem of constructing an optimal

ellipse for this problem has been studied by Chatelin and Ho. The reader is referred to

(Chatelin and Ho, 1990) for details of constructing these polynomials.

The reasoning behind this type of algorithm is that that if v1 is a linear combination of

precisely k eigenvectors of A then Arnoldi factorization terminates in k steps (i.e., fk = 0).

The columns of Vk will form an orthonormal basis for the invariant subspace spanned by

those eigenvectors, and the Ritz values �(Hk) will be the corresponding eigenvalues of A.

The update of the starting vector v1 is designed to enhance the components of this vector

in the directions of the wanted eigenvectors and damp its components in the unwanted

directions. This e�ect is achieved at Step (a5.4) since

v1 =
nX

j=1

xjj )  (A)v1 =
nX

j=1

xj (�j)j :

If the same polynomial were applied each time, then after M iterations, the j-th original

expansion coe�cient would be essentially attenuated by a factor�
 (�j)

 (�1)

�M
;

where the eigenvalues have been ordered according decreasing values j (�j))j. The eigen-

values inside the region Cu become less and less signi�cant as the iteration proceeds. Hence,

the wanted eigenvalues are approximated increasingly well as the iteration proceeds.

Another restarting strategy proposed by Saad is to replace the starting vector with a

linear combination of Ritz vectors corresponding to wanted Ritz values. If the eigenvalues

and corresponding vectors are re-indexed so that the �rst k are wanted and (x̂j ; �j) is the

the Ritz pair approximating the eigenpair (xj ; �j) then

v+1  
kX

j=1

x̂jj (4)

is taken as the new starting vector. Again, the motivation here is that the Arnoldi residual

fk would vanish if these k Ritz vectors were actually eigenvectors of A and the Ritz vectors

are the best available approximations to these eigenvectors. A heuristic choice for the

coe�cients j has also been suggested by Saad (1980). It is to weight the j-th Ritz vector

with the value of its Ritz estimate and then normalize so that the new starting vector

has norm 1. This has the e�ect of favoring the Ritz vectors that have least converged.

Additional aspects of explicit restarting are developed thoroughly in Chapter VII of (Saad,

1992). In any case, this restarting mechanism is actually polynomial restarting in disguise.

Since x̂j 2 Km(A; v1) implies x̂j = �j(A)v1 for some polynomial �j the formula for v+1 in

(4) is of the form

v+1  �(A)v1 �
kX

j=1

j�j(A)v1: (5)

12



The technique just described is referred to as explicit (polynomial) restarting. When

Chebyshev polynomials are used it is called an Arnoldi-Chebyshev method. The cost in

terms of matrix-vector products w  Av is M � (m+ deg( )) for M major iterations. The

cost of the arithmetic in the Arnoldi factorization is M � (2n �m2+O(m3)) Flops (oating

point operations). Tradeo�s must be made in terms of cost of the Arnoldi factorization vs.

cost of the matrix-vector products Av and also in terms of storage (nm+ O(m2)).

5.2. Implicit restarting

There is another approach to restarting that o�ers a more e�cient and numerically

stable formulation. This approach, called implicit restarting, is a technique for combining

the implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to

obtain a truncated form of the implicitly shifted QR-iteration. The numerical di�culties

and storage problems normally associated with Arnoldi and Lanczos processes are avoided.

The algorithm is capable of computing a few (k) eigenvalues with user speci�ed features such

as largest real part or largest magnitude using 2nk + O(k2) storage. No auxiliary storage

is required. The computed Schur basis vectors for the desired k-dimensional eigenspace are

numerically orthogonal to working precision. This method is well suited to the development

of mathematical software and this will be discussed in Section 7.

Implicit restarting provides a means to extract interesting information from very large

Krylov subspaces while avoiding the storage and numerical di�culties associated with the

standard approach. It does this by continually compressing the interesting information into

a �xed size k-dimensional subspace. This is accomplished through the implicitly shifted QR

mechanism. An Arnoldi factorization of length m = k + p

AVm = VmHm + fme
T
m; (6)

is compressed to a factorization of length k that retains the eigen-information of interest.

This is accomplished using QR steps to apply p shifts implicitly. The �rst stage of this shift

process results in

AV +
m = V +

mH
+
m + fme

T
mQ; (7)

where V +
m = VmQ, H

+
m = QTHmQ, and Q = Q1Q2 � � �Qp, with Qj the orthogonal matrix

associated with the shift �j . It may be shown that the �rst k� 1 entries of the vector eTmQ

are zero (i.e. eTmQ = (�eTk ; q̂
T ) ). Equating the �rst k columns on both sides yields an

updated k�step Arnoldi factorization

AV +
k = V +

k H
+
k + f+k e

T
k ; (8)

with an updated residual of the form f+k = V +
k+pek+1�̂k + fk+p�. Using this as a starting

point it is possible to apply p additional steps of the Arnoldi process to return to the original

m-step form.

Each of these shift cycles results in the implicit application of a polynomial in A of

degree p to the starting vector.

v1   (A)v1 with  (�) =

pY
1

(� � �j):
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The roots of this polynomial are the shifts used in the QR process and these may be

selected to �lter unwanted information from the starting vector and hence from the Arnoldi

factorization. Full details may be found in (Sorensen, 1992). The basic iteration is given

here in Algorithm 6 and the diagrams in Figures 1{3 describe how this iteration proceeds

schematically. In Algorithm 6 and in the discussion below, the notation M(1:n;1:k) denotes

the leading n� k submatrix of M .

+

p

k

p

pkk + p

Figure 1: Representation of Vk+pHk+p + fk+pe
T
k+p. Shaded regions denote

nonzeros.

+

k

p

pkk + p

Figure 2: Vk+pQQ
THk+pQ+ fk+pe

T
k+pQ after p implicitly shifted qr steps.

k

k

+

k

Figure 3: Leading k columns VkHk + fke
T
k form a length k Arnoldi factor-

ization after discarding the last p columns.
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Observe that ifm = n then f = 0 and this iteration is precisely the same as the Implicitly

Shifted QR iteration. Even for m < n, the �rst k columns of V and the Hessenberg

submatrix H(1:k;1:k) are mathematically equivalent to the matrices that would appear in the

full Implicitly Shifted QR iteration using the same shifts �j . In this sense, the Implicitly

Restarted Arnoldi method may be viewed as a truncation of the Implicitly Shifted QR

iteration. The fundamental di�erence is that the standard Implicitly Shifted QR iteration

selects shifts to drive subdiagonal elements of H to zero from the bottom up while the

shift selection in the Implicitly Restarted Arnoldi method is made to drive subdiagonal

elements of H to zero from the top down. Important implementation details concerning the

deation (setting to zero) of subdiagonal elements of H and the purging of unwanted but

converged Ritz values are beyond the scope of this discussion. However, these details are

extremely important to the success of this iteration in di�cult cases. Complete details of

these numerical re�nements may be found in (Lehoucq, 1995 and Lehoucq and Sorensen,

1994).

Algorithm 6: An Implicitly Restarted Arnoldi Method

Input: (A;V;H;f) with AVm = VmHm + fme
T
m,

(an m-Step Arnoldi Factorization);

For ` = 1; 2; 3; ::: until convergence

(a6.2) Compute �(Hm) and select set of p shifts �1; �2; :::�p

based upon �(Hm) or perhaps other information;

(a6.3) qT  eTm;

(a6.4) For j = 1; 2; :::; p,

Factor [Qj;Rj] = qr(Hm � �jI);

Hm  QH
j HmQj ; Vm  VmQj;

q  qHQj ;

End For

(a6.5) fk  vk+1�̂k + fm�k;Vk  Vm(1:n;1:k);Hk  Hm(1:k;1:k);

(a6.6) Beginning with the k-step Arnoldi factorization

AVk = VkHk + fke
T
k ,

apply p additional steps of the Arnoldi process

to obtain a new m-step Arnoldi factorization

AVm = VmHm + fme
T
m .

End For

The above iteration can be used to apply any known polynomial restart. If the roots

of the polynomial are not known there is an alternative implementation that only requires

one to compute q1 =  (H)e1, where  is the desired degree p polynomial. A sequence of

Householder transformations may developed to form a unitary matrix Q such that Qe1 = q1
and H  QHHQ is upper Hessenberg. The details which follow standard developments for

the Implicitly Shifted QR iteration will be omitted here.
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A shift selection strategy that has proved successful in practice is called the \Exact Shift

Strategy". In this strategy, one computes �(H) and sorts this into two disjoint sets 
w and


u. The k Ritz values in the set 
w are regarded as approximations to the \wanted"

eigenvalues of A, and the p Ritz values in the set 
u are taken as the shifts �j . An

interesting consequence (in exact arithmetic) is that after Step (a6.4) above, the spectrum

of Hk in Step (a6.5) is �(Hk) = 
w and the updated starting vector v1 is a particular linear

combination of the k Ritz vectors associated with these Ritz values. In other words, the

implicit restarting scheme with exact shifts provides a speci�c selection of the coe�cients j
in Eq. (4) and this implicit scheme costs p rather than the k+ p matrix-vector products the

explicit scheme would require. Thus the exact shift strategy can be viewed both as a means

to damp unwanted components from the starting vector and also as directly forcing the

starting vector to be a linear combination of wanted eigenvectors. The exact shift strategy

has two additional interesting theoretical properties.

Lemma 5 If H is unreduced and diagonalizable then:

1. The polynomial � in (5) satis�es �(�) =  (�)�(�),

where  is the exact shift polynomial and � is some

polynomial of degree at most k � 1.

2. The updated Krylov subspace generated by the new

starting vector satis�es

Km(A; v
+
1 ) = Spanfx̂1; x̂2; � � � ; x̂k; Ax̂j ; A

2x̂j ; � � � ; A
px̂jg

for j = 1; 2; � � � ; k.

The �rst property �(�) =  (�)�(�) indicates that the linear combination selected by the

exact shift scheme is somehow minimal while the second property indicates that each of the

subspaces Kp(A; x̂j) � Km(A; v
+
1 ) so that each sequence of \wanted" Ritz vectors is rep-

resented equally in the updated subspace. The �rst property was established in (Lehoucq,

1995) along with an extensive analysis of the numerical properties of implicit restarting. The

surprising second property was established in (Morgan, 1996), along with some compelling

numerical results indicating superior performance of implicit over explicit restarting.

6. The Generalized Eigenvalue Problem

A typical source of large-scale eigenproblems is through a discrete form of a contin-

uous problem. The resulting �nite-dimensional problems become large due to accuracy

requirements and spatial dimensionality. Typically this takes the form

Lu = u� in 
; (9)

u satis�es B on @
;

where L is some linear di�erential operator. A number of techniques may be used to

discretize L. The �nite element method provides an elegant discretization. If W is a space

of functions in which the solution to (9) may be found and Wn � W is an n-dimensional
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subspace with basis functions f�jg then an approximate solution un is expanded in the

form

un =
nX

j=1

�j�j :

A variational or a Galerkin principle is applied depending on whether or not L is self-adjoint,

leading to a weak form of (9)

A(v; u) = � < v; u >; (10)

where A(v; u) is a bilinear form. Substituting the expanded form of u = un and requiring

(10) to hold for each trial function v = �i gives a set of algebraic equations

A(�i;
nX

j=1

�j�j) = � < �i;

nX
j=1

�j�j >;

where < �; � > is an inner product in Wn. This leads to the following systems of equations

nX
j=1

A(�i; �j)�j = �

nX
j=1

< �i; �j > �j ; (11)

for 1 � i � n. We may rewrite (11) and obtain the matrix equation

Ax = �Mx;

where

Ai;j = A(�i; �j); Mi;j =< �i; �j >; xT = [�1; . . . ; �n]
T ;

for 1 � i; j � n. Typically the basis functions are chosen so that few entries in a row of

A or M are nonzero. In structures problems A is called the \sti�ness" matrix and M is

called the \mass" matrix. In chemistry and physics M is often referred to as the \overlap"

matrix. A nice feature of this approach to discretization is that if the basis functions �j all

individually satisfy B on @
 then the boundary conditions are naturally incorporated into

the discrete problem. Moreover, in the self-adjoint case, the Rayleigh principle is preserved

from the continuous to the discrete problem. In particular, since Ritz values are Rayleigh

quotients, this assures the smallest Ritz value is greater than the smallest eigenvalue of the

original problem.

Thus, it is natural for large-scale eigenproblems to arise as generalized rather than

standard problems. If L is self-adjoint the discrete problems are symmetric or Hermitian

and if not the matrix A is nonsymmetric but the matrix M is symmetric and at least

positive semi-de�nite. There are a number of ways to convert the generalized problem to

standard form. There is always motivation to preserve symmetry when it is present.

If M is positive de�nite then there exists a factorization M = LLT , and the eigenvalues

of Â � L�1AL�T are the eigenvalues of (A;M), and the eigenvectors are obtained by

solving LTx = x̂, where x̂ is an eigenvector of Â. This standard transformation is �ne if one

wants the eigenvalues of largest magnitude and it preserves symmetry if A is symmetric.

However, when M is ill-conditioned this can be a dangerous transformation leading to
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numerical di�culties. Since a matrix factorization will have to be done anyway, one may

as well formulate a spectral transformation.

6.1. Structure of the spectral transformation

A convenient way to provide a spectral transformation is to note that

Ax = �Mx () (A� �M)x = (�� �)Mx

Thus

(A� �M)�1Mx = x�; where � =
1

�� �
:

If A is symmetric then one can maintain symmetry in the Arnoldi/Lanczos process by

taking the inner product to be

< x; y >= xTMy:

It is easy to verify that the operator (A��M)�1M is symmetric with respect to this inner

product if A is symmetric. In the Arnoldi/Lanczos process the matrix-vector product w  

Av is replaced by w  (A��M)�1Mv and the step h V T f is replaced by h V T (Mf).

If A is symmetric then the matrix H is symmetric and tridiagonal. Moreover, this process

is well de�ned even when M is singular and this can have important consequences even if

A is nonsymmetric. We shall refer to this process as the M -Arnoldi process.

If M is singular then the operator S � (A � �M)�1M has a nontrivial null space and

the bilinear function < x; y >= xTMy is a semi-inner product and kxkM �< x; y >1=2 is a

semi-norm. Since (A��M) is assumed to be nonsingular, N �Null(S) =Null(M). Vectors

in N are generalized eigenvectors corresponding to in�nite eigenvalues. Typically, one is

only interested in the �nite eigenvalues of (A;M) and these will correspond to the nonzero

eigenvalues of S. The invariant subspace corresponding to these nonzero eigenvalues is

easily corrupted by components of vectors from N during the Arnoldi process. However,

using the M -Arnoldi process with some re�nements can provide a solution.

In order to better understand the situation, it is convenient to note that since M is

positive semi-de�nite, there is an orthogonal matrix Q such that

M = Q

"
D 0

0 0

#
QT ;

where D is a positive de�nite diagonal matrix of order n, say. Thus

Ŝ � QTSQ =

"
S1 0

S2 0

#
;

where S1 is a square matrix of order n and S2 is an m � n matrix with the original A;M

being of order m+ n. Observe now that a nonzero eigenvalue � of Ŝ satis�es Ŝx = x� , i.e."
S1x1
S2x1

#
=

"
x1�

x2�

#
;

so that x2 = 1
�S2x1 must hold. Note also that for any eigenvector xH = (xH1 ; x

H
2 ), the

leading vector x1 must be an eigenvector of S1. Since Ŝ is block triangular, �(Ŝ) = �(S1)[
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�(0m). Assuming S2 has full rank, it follows that if S1 has a zero eigenvalue then there is no

corresponding eigenvector (since S2x1 = 0 would be implied). Thus if zero is an eigenvalue

of S1 with algebraic multiplicity mo then zero is an eigenvalue of Ŝ of algebraic multiplicity

m +mo and with geometric multiplicity m. Of course, since, S is similar to Ŝ all of these

statements hold for S as well.

6.2. Eigenvector/null-space puri�cation

With these observations in hand, it is possible to see the virtue of using M -Arnoldi on

S. After k-steps of M -Arnoldi,

SV = V H + feTk with V TMV = Ik ; V
TMf = 0:

Introducing the similarity transformation Q gives

ŜV̂ = V̂ H + f̂ eTk with V̂ TQTMQV̂ = Ik ; V
TQTMQf̂ = 0;

where V̂ = QTV and f̂ = QTf . Partitioning V̂ T = (V T
1 V

T
2 ) and f̂T = (fT1 ; f

T
2 ) consistent

with the blocking of Ŝ gives

S1V1 = V1H + f1e
T
k with V T

1 DV1 = Ik ; V
T
1 Df1 = 0:

Moreover, the side condition S2V1 = V2H + f2e
T
k holds, so that in exact arithmetic a zero

eigenvalue should not appear as a converged Ritz value of H . This argument shows that

M -Arnoldi on S is at the same time doing D-Arnoldi on S1 while avoiding convergence to

zero eigenvalues.

Round-o� error due to �nite precision arithmetic will cloud the situation, as usual. It

is clear that the goal is to prevent components in N from corrupting the vectors V . Thus,

to begin, the starting vector v1 should be of the form v1 = Sv. If a �nal approximate

eigenvector x has components in N they may be purged by replacing x  Sx and then

normalizing. To see the e�ect of this, note that if x = Q

"
x1
x2

#
then Sx = Q

"
S1x1
S2x1

#
;

and all components in N which are of the form Q

"
0

p

#
will have been purged. This

�nal application of S may be done implicitly in two ways. One is to note that if x = V y

with Hy = y� then Sx = V Hy + feTk y = x� + feTk y, and this is the correction suggested

by (Nour-Omid et al., 1987). Another recent suggestion due to Meerbergen and Spence

is to use implicit restarting with a zero shift (Meerbergen and Spence, 1995). Recall that

implicit restarting with ` zero shifts is equivalent to starting the M -Arnoldi process with a

starting vector of S`v1 and all the resulting Ritz vectors will be multiplied by S` as well.

After applying the implicit shifts to H , the leading submatrix of order k� ` will provide the

updated Ritz values. No additional explicit matrix-vector products with S are required.

The ability to apply ` zero shifts (i.e., to multiply by S` implicitly) is very important

when S1 has zero eigenvalues. If S1x1 = 0 then"
S1 0

S2 0

# "
x1
x2

#
=

"
0

S2x1

#
2 N :
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Thus to completely eradicate components fromN one must multiply by S`, where ` is equal

to the dimension of the largest Jordan block corresponding to a zero eigenvalue of S1.

Spectral transformations were studied extensively by Ericsson and Ruhe (1980) and the

�rst eigenvector puri�cation strategy was developed in (Nour-Omid et al., 1987). Shift and

invert techniques play an essential role in the block Lanczos code developed by Grimes,

Lewis, and Simon. The many nuances of this technique in practical applications are dis-

cussed thoroughly in (Grimes et al., 1994). The development presented here and the eigen-

vector puri�cation through implicit restarting is due to Meerbergen and Spence (1995).

6.3. An example

This discussion is illustrated with the following example.

A =

"
K C

CT 0

#
and M =

"
I 0

0 0

#
;

with A an order 325 matrix approximation to a convection-di�usion operator and C a

structured random matrix. This example was chosen because it has the block structure of

a typical steady-state Navier-Stokes linear stability analysis; see (Meerbergen and Spence,

1995). The following MATLAB code was used to generate the example:

rand('seed',0);

n = 225;m=100;

K = lapc(n,100);

C = [rand(m,m) ; zeros(n-m,m)];

M = [eye(n) zeros(n,m) ; zeros(m,n) zeros(m,m)];

A = [K C ; C' zeros(m,m)];

mu = 7.0;

S = (A - mu*M)\M;

The matrices K, C, M, A correspond to the matrices in the equations above. The function

lapc computes a �nite di�erence approximation to �u+ �ux on a 15� 15 regular grid in

the unit square with � = 100. Any matrix pencil (A;M) with this block structure (assuming

C has full rank and A� �M is nonsingular) will produce an S of the form

S =

2
64 0 0 0

0 S22 0

S31 S32 0

3
75 ;

with the upper-left zero block of order m and with S22 nonsingular and order n�m. From

the above discussion one may conclude that S has an eigenvalue 0 with algebraic multiplicity

2m and geometric multiplicity m. There are three important subspaces associated with S.

They are N , G and R, and these spaces satisfy

SN = f0g ; SG � N ; SR � R:

All of Cn may be represented as a direct sum of these three spaces. The (oblique) projectors

associated with these spaces shall be denoted by PN , PG , and PR respectively. Explicit

formulas are:
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kPNV k kPNV
+k kPGV k kPGV

+k

3.70 1.48(-11) 1.32(-11) 2.85(-12)

Table 1: Projection of V onto N and G

j kAxj �Mxj�jk k(Axj �Mxj�j)
+k

1 1.50(-03) 9.93(-06)

2 1.11(-02) 6.77(-05)

Table 2: Residuals before and after purging components from N and G

PN =

2
64 0 0 0

0 0 0

0 �S32S
�1
22 I

3
75 ;

PG =

2
64 I 0 0

0 0 0

0 0 0

3
75 ;

PR =

2
64 0 0 0

0 S22
S31 S32 0

3
75 :

Table 1 shows the norms of the projections of the basis vectors V onto the spaces N and

G, where V was computed with 20 steps of M -Arnoldi starting with a vector v1 = Sv (v a

vector with all entries equal to 1). The norms of the projections are taken before and after

purging by applying two zero shifts using implicit restarting. The \+" symbol denotes the

updated basis after purging.

Table 2 shows the residual norms for the two approximate eigenvalues that are closest

to the shift � before and after purging.

Clearly, there is considerable merit to doing this purging. This generalizes the purging

proposed in (Nour-Omid et al., 1995) and seems to be quite promising. Further testing is

needed but some form of this process is essential to the construction of numerical software

to implement shift-invert strategies.

7. Software, Performance, and Parallel Computation

The Implicitly Restarted Arnoldi Method has been implemented and a package of For-

tran 77 subroutines has been developed. This software, called ARPACK (Lehoucq et al.,

1994), provides several features which are not present in other codes based upon a single-

vector Arnoldi process. One of the most important features from the software standpoint

is the reverse communication interface. This feature provides a convenient way to interface

with application codes without imposing a structure on the user's matrix or the way a

matrix-vector product is accomplished. In the parallel setting, this reverse communication
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interface enables e�cient memory and communication management for massively parallel

MIMD and SIMD machines. The important features of ARPACK are:

� A reverse communication interface.

� Ability to return k eigenvalues that satisfy a user speci�ed criterion, such as largest

real part, largest absolute value, largest algebraic value (symmetric case), etc.

� A �xed pre-determined storage requirement throughout the computation. Usually

this is n �O(2k) + O(k2), where k is the number of eigenvalues to be computed and

n is the order of the matrix. No auxiliary storage or interaction with such devices is

required during the course of the computation.

� Eigenvectors computed on request. The Arnoldi basis of dimension k is always com-

puted. The Arnoldi basis consists of vectors which are numerically orthogonal to

working accuracy. Computed eigenvectors of symmetric matrices are also numerically

orthogonal.

� User-speci�ed numerical accuracy of the computed eigenvalues and vectors. Residual

tolerances may be set to the level of working precision. At working precision, the

accuracy of the computed eigenvalues and vectors is consistent with the accuracy

expected of a dense method such as the implicitly shifted QR iteration.

� No theoretical or computational di�culty for multiple eigenvalues, other than addi-

tional matrix-vector products required to expose the multiple instances. This is made

possible through the implementation of deation techniques similar to those employed

to make the implicitly shifted QR-algorithm robust and practical. A block method is

not required; hence, one does not need to \guess" the correct blocksize that would be

needed to capture multiple eigenvalues.

7.1. Reverse communication interface

As mentioned above, the reverse communication interface is one of the most important

aspects of the design of ARPACK. In the serial code, a typical usage of this interface is

illustrated with the following example, where snaupd is an ARPACK module:

10 continue

call snaupd (ido, bmat, n, which,...,

* V, .., work, info)

if (ido .eq. newprod) then

call matvec ('A', n, workd(ipntr(1)),

* workd(ipntr(2)))

else

return

endif

go to 10
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As usual, with reverse communication, control is returned to the calling program when

interaction with the matrix A is required. The action requested of the calling program is

to simply perform the action indicated by the reverse communication parameter ido (in

this case, multiply the vector held in the array workd beginning at location ipntr(1) and

put the result in the array workd beginning at location ipntr(2)). Note that call to the

subroutine matvec in this code segment is simply meant to indicate that this matrix-vector

operation is taking place. The user is free to use any available mechanism or subroutine to

accomplish this task. In particular, no speci�c data structure is imposed and, indeed, no

explicit representation of the matrix is even required. One only needs to supply the action

of the matrix on the speci�ed vector.

There are several reasons for supplying this interface. It is more convenient to use with

large application codes. The alternative is to put the user supplied matrix-vector product

in a subroutine with a pre-speci�ed calling sequence. This may be quite cumbersome and

is especially so in those cases where the action of the matrix on a vector is known only

through a lengthy computation that doesn't involve the matrix A explicitly. Typically, if

the matrix-vector product must be provided in the form of a subroutine with a �xed calling

sequence, then named common or some other means must be used to pass data to the routine.

This is incompatible with e�cient memory management for massively parallel MIMD and

SIMD machines.

This has been implemented on a number of parallel machines including the CRAY-C90,

Thinking Machines CM-200 and CM-5, Intel Delta, and CRAY T3D. Parallel performance

on the C90 is obtained through the BLAS operations without any modi�cation to the serial

code. SIMD performance on the CM-200 is also relatively straightforward. All of the BLAS

operations were expressed using Fortran90 array constructs and hence were automatically

compiled for execution on the SIMD array instead of the front end. Operations on the

projected matrix H were not encoded with these array constructs and hence were auto-

matically scheduled for the front end. The only additional complication was to de�ne the

data layouts of the V array and the work arrays for e�cient execution. In the distributed

memory implementations, the reverse communication interface provided a natural way to

parallelize the ARPACK codes internally without imposing a �xed parallel decomposition

on the user supplied matrix-vector product.

7.2. Data distribution and global operations

The parallelization strategy for distributed memory machines consists of providing the

user with a Single Program Multiple Data (SPMD) template. The array V is blocked

and distributed across the processors. The projected matrix H is replicated. The SPMD

program looks essentially like the serial code except that the local block Vloc is passed

in place of V . The work space is partitioned consistently with the partition of V and

each section of the work space is distributed to the node processors. Thus the SPMD

parallel code looks very similar to that of the serial code. Assuming a parallel version of the

subroutine matvec, an example of the application of the distributed interface is illustrated

as the follows:

10 continue

call snaupd (ido, bmat, nloc, which, ...,
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* Vloc, .., work, info)

if (ido .eq. newprod) then

call matvec ('A', nloc, workd(ipntr(1)),

* workd(ipntr(2)))

else

return

endif

go to 10

Where, nloc is the number of rows in the block Vloc of V that has been assigned to this

node process.

Typically, the blocking of V is commensurate with the parallel decomposition of the

matrix A as well as with the con�guration of the distributed memory and interconnection

network. Logically, the V matrix be partitioned by blocks

V T = (V (1)T ; V (2)T ; ::::; V (nproc)T )

with one block per processor and with H replicated on each processor.

The explicit steps of the process responsible for the j block are:

1. �k = gnorm(f
(�)

k ); v
(j)
k+1  f

(j)
k =�;

2. V
(j)
k+1  (Vk ; vk+1)

(j); Ĥk  

 
Hk

�ke
T
k

!
:

3. z  (Aloc)vk+1;

4. h(j)  V
(j)
k

T
z; h gsum(h(�)) fk+1  z � Vk+1h;

5. Hk+1  (Ĥk; h);

The function gnorm at Step 1 is meant to represent the global reduction operation of

computing the norm of the distributed vector fk from the norms of the local segments

f
(j)
k , and the function gsum at Step 4 is meant to represent the global sum of the local

vectors h(j) so that the quantity h =
Pnproc

j=1 h(j) is available to each process on completion.

These are the only two global communication points within this algorithm. The remainder

is perfectly parallel. Additional communication will typically occur at Step 3. Here the

operation (Aloc)v is meant to indicate that the user supplied matrix-vector product is able

to compute the local segment of the matrix-vector product Av that is consistent with the

partition of V . Ideally, this would only involve nearest neighbor communication among the

processes.

Since H is replicated on each processor, the parallelization of the implicit restart mech-

anism described by Algorithm 6 remains untouched. The only di�erence is that the local

block V (j) takes the place of the full matrix V . All operations on the matrix H are repli-

cated on each processor. Thus there is no communication overhead but there is a \serial

bottleneck" here due to the redundant work. If k is small relative to n, this bottleneck
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is insigni�cant. However, it becomes a very important latency issue as k grows, and will

prevent scalability if k grows with n as the problem size increases.

The main bene�t of this approach is that the changes to the serial version of ARPACK

are very minimal. Since the change of dimension from matrix order n to its local distributed

blocksize nloc is invoked through the calling sequence of the subroutine snaupd, there is

no essential change to the code. Only six routines were e�ected, and these in a minimal

way. These routines required either a change in norm calculation for distributed vectors

(Step 1) or in the distributed dense matrix-vector product (Step 4). Since the vectors are

distributed, norms had to be done via partial (scaled) dot products for the local vector

segments and then a global sum operation was used to complete the sum of the squared

norms of these segments on all processors. More speci�cally, the commands are changed

from

rnorm = sdot (n, resid, 1, workd, 1)

rnorm = sqrt(abs(rnorm))

to

rnorm0 = sdot (n, resid, 1, workd, 1)

call gssum(rnorm0,1,tmp)

rnorm0 = sqrt(abs(rnorm0))

rnorm = rnorm0

Similarly, the computation of the matrix-vector product operation h  V Tw requires a

change from

call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,

* zero, h(1,j), 1)

to

call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,

* zero, h(1,j), 1)

call gssum(h(1,j),j,h(1,j+1))

so the global sum operation gssum was su�cient to implement all of the global operations.

7.3. Distributed memory parallel performance

To get an idea of the potential performance of ARPACK on distributed memory ma-

chines some examples have been run on the Intel Touchstone DELTA. The examples have

been designed to test the performance of the software, the matrix structure, the Touchstone

DELTA machine architecture, and the speedup behavior of the software on DELTA.

The user's implementation of the matrix-vector product w  Av can have considerable

e�ect upon the parallel performance. Moreover, there is a fundamental di�culty in testing

how the performance scales as the problem size increases. The di�culty is that the prob-

lem often becomes increasingly di�cult to solve as the size increases due to clustering of

eigenvalues. The tests reported here attempt to isolate and measure the performance of the

parallelization of the ARPACK routines independently of the matrix-vector product.
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Problem size Number of nodes Total Time (s)

3000*1 1 22.96

3000*2 2 23.22

3000*4 4 23.98

3000*8 8 24.08

3000*16 16 24.39

3000*32 32 24.95

3000*64 64 25.50

3000*128 128 27.13

3000*256 256 28.65

Table 3: Parallel ARPACK scaled speedup test on DELTA, matrix order 3,000 on each

node

In order to isolate the performance of the ARPACK routines from the performance of the

user's matrix-vector product and also to isolate e�ects of a changing problem characteristics

as the size increases, a test was comprised of replicating the same matrix repeatedly to obtain

a block diagonal matrix. Each diagonal block corresponds to a block of the partitioned and

distributed matrix V . This is, of course, a completely contrived situation that allows the

workload to increase linearly with the number of processors. Since the each diagonal block

of the matrix is identical the algorithm should behave as if nproc identical problems are

being solved simultaneously as long as the initial distributed segments of v1 are generated

the same. Thus, the only things that could prevent ideal speedup are the communication

involved in the global operations and the \serial bottleneck" associated with the replicated

operations on the projected matrixH . If neither of these were present then one would expect

the execution time to remain constant as the problem size and the number of processors

increase.

In this �rst example, each diagonal block is of order 3,000, which is identical to the

vector segment size on each node. The matrix-vector product operation z(j)  (Aloc)v
(j)
k+1

is executed locally on each node processor upon the distributed vector segments v
(j)
k+1, and

there is no communication among processors involved in this operation. As described above,

the problem size in increased linearly with the the number of processors by adjoining an

additional identical diagonal block to the A matrix for each additional processor. The global

sum operation gssum is essentially a ring algorithm and thus has a linear cost with respect

to the number of nodes. Since the diagonal blocks are identical, the replicated operations

on H should remain the same as the problem size increases and hence linear speedup is

expected, i.e., as the problem size increases the execution time should remain constant.

This ideal speedup is very nearly achieved, as reected in Table 3.

The second example is obtained from a similar numerical model of the eigenproblem of

the Laplacian operator de�ned on the unit square with square with Dirichlet boundary con-

ditions on three sides and a Neuman boundary condition on the fourth side. This leads to

a mildly nonsymmetric matrix with the same 5-diagonal structure as the standard 2-D dis-

crete Laplacian with a 5-point stencil. The unit square f(x; y)j0 � x; y � 1g was discretized

with x-direction mesh size 1=(n+1) and y-direction mesh size 1=(m+1), respectively. Thus
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Problem size Number of nodes Total Time (s)

2500*1 1 19.63

2500*2 2 20.71

2500*4 4 21.97

2500*8 8 22.47

2500*16 16 22.50

2500*32 32 23.13

2500*64 64 23.68

2500*128 128 24.78

2500*256 256 28.16

Table 4: Parallel ARPACK scaled speedup test on DELTA, matrix order 2,500 on each

node

the matrix A is block tridiagonal and of order N = nm . The order of each diagonal block

is n, and the number of diagonal blocks is m.

A natural way to carry out the matrix-vector product operation w  Av is described

as follows. A standard domain decomposition partitioning of the unit square into sub-

rectangles leads to a parallel matrix-vector product that exchanges data only across the

boundaries of the subdomains and hence needs only nearest neighbor connections. The

subdomains are naturally chosen so that the blocking of the matrix is commensurate with

the blocking and distribution of the V array. The reverse communication interface allows

the user supplied matrix-vector product to take advantage of the matrix structure. Simple

send and receive operations using the native Intel isend and irecv are used to carry out the

nearest neighbor communication operation.

The results of these tests are given in Table 4 and demonstrate nearly the same speedup

as in Table 3. The relatively minor communication to receive boundary data from nearest

neighbors slightly degraded the speedup.

The �nal example shows how dramatically an ine�cient matrix-vector product operation

w  Av and also how problem size can e�ect performance. A naive way to perform the

matrix-vector product would be to collect the segments of the vector v from all nodes before

the operation, and then distribute the segments of the result vector w to each node after the

operation. The performance of this scheme is shown in Table 5. No advantage of the matrix

structure was taken in computing the matrix-vector product. The matrix size was �xed at

n = 3,200. The parallel ARPACK software was then used to compute the eigenvalues and

eigenvectors. A residual tolerance of (10�8) was imposed.

Table 5 shows the total time and the number of iterations required to solve this �xed

problem with a di�erent number of processors. The number of iterations varied with dif-

ferent processor con�gurations and this is attributed to di�erent initial random vectors

being generated as the number of processors changed. However, the corresponding result

eigenvalues and eigenvectors are identical for all of the runs.

The speedup caused by increasing the number of processors can be observed by checking

the average run time per iterate for each individual test. The fourth column in Table 5,

demonstrates deteriorated speedup after the number of processors exceeds 32. Column �ve
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Nodes Time (s) Iters. Ave. T ime
Iter

OP�x T ime
Total T ime

1 1809.07 173 10.46 0.84 %

2 1073.36 189 5.679 1.48 %

4 732.72 213 3.440 2.65 %

8 449.95 225 2.000 5.24 %

16 201.27 192 1.048 8.90 %

32 114.98 154 0.747 13.3 %

64 161.24 260 0.620 18.0 %

128 128.28 210 0.611 25.9 %

Table 5: Parallel ARPACK �xed-size speeedup test, matrix order 3,200

shows that the reason for this deterioration lies with the ine�cient matrix-vector product.

7.4. General applications of ARPACK

ARPACK has been used in a variety of challenging applications, and has proven to

be useful both in symmetric and nonsymmetric problems. It is of particular interest when

there is no opportunity to factor the matrix and employ a \shift and invert" form of spectral

transformation,

Â (A� �I)�1 : (12)

Existing codes often rely upon this transformation to enhance convergence. Extreme eigen-

values f�g of the matrix Â are found very rapidly with the Arnoldi/Lanczos process and

the corresponding eigenvalues f�g of the original matrix A are recovered from the relation

� = 1=� + �. Implementation of this transformation generally requires a matrix factoriza-

tion. In many important applications this is not possible due to storage requirements and

computational costs. The implicit restarting technique used in ARPACK is often successful

without this spectral transformation.

One of the most important classes of application arise in computational uid dynamics.

Here the matrices are obtained through discretization of the Navier-Stokes equations. A typ-

ical application involves linear stability analysis of steady state solutions. Here one linearizes

the nonlinear equation about a steady state and studies the stability of this state through

the examination of the spectrum. Usually this amounts to determining if the eigenvalues of

the discrete operator lie in the left halfplane. Typically these are parametrically dependent

problems; the analysis consists of determining phenomena such as simple bifurcation, Hopf

bifurcation (an imaginary complex pair of eigenvalues cross the imaginary axis), turbulence,

or vortex shedding as a parameter is varied. ARPACK is well suited to this setting as it is

able to track a speci�ed set of eigenvalues while they vary as functions of the parameter.

Our software has been used to �nd the leading eigenvalues in a Couette-Taylor wavy vortex

instability problem involving matrices of order 4,000. One interesting facet of this applica-

tion is that the matrices are not available explicitly and are logically dense. The particular

discretization provides e�cient matrix-vector products through Fourier transform. Details

may be found in (Edwards et al., 1994).
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Very large symmetric generalized eigenproblems arise in structural analysis. One ex-

ample that we have worked with at Cray Research through the courtesy of Ford Motor

Company involves an automobile engine model constructed from 3D solid elements. Here

the interest is in a set of modes to allow solution of a forced frequency response problem

(K � �M)x = f(t), where f(t) is a cyclic forcing function which is used to simulate ex-

panding gas loads in the engine cylinder as well as bearing loads from the piston connecting

rods. This model has over 250,000 degrees of freedom. The smallest eigenvalues are of

interest and the ARPACK code appears to be very competitive with the best commercially

available codes on problems of this size. For details, see (Sorensen et al., 1993).

The Singular Value Decomposition (SVD) may also be computed using ARPACK and

possesses many large-scale applications. Two SVD applications occur in computational

biology. The �rst of these is the 3-D image reconstruction of biological macromolecules

from 2-D projections obtained through electron micrographs. The second is an application

to molecular dynamical simulation of the motions of proteins. The SVD may be used to

compress the data required to represent the simulation and more importantly to provide

an analytical tool to help in understanding the function of the protein. See (Romo et al.,

1994) for further details of the molecular dynamics application. The underlying algorithm

for reconstructing 3-D image reconstruction of biological macromolecules from 2-D pro-

jections (Van Heel and Frank, 1981) is based upon the statistical technique of principal

component analysis (Van Hu�e and Vandewalle, 1991). In this algorithm, a singular value

decomposition (SVD) of the data set is performed to extract the largest singular vectors,

which are then used in a classi�cation procedure. Our initial e�ort has been to replace the

existing algorithm for computing the SVD with ARPACK which has increased the speed of

the analysis by a factor of 7 on an Iris workstation. The accuracy of the results were also

increased dramatically. Details are reported in (Feinswog et al., in preparation).

Computational chemistry provides a rich source of problems.

ARPACK is being used in two applications currently and holds pro-

mise for a variety of challenging problems in this area. We are collaborating with researchers

at Ohio State on large-scale three-dimensional reactive scattering problems. The governing

equation is the Schroedinger equation and the computational technique for studying the

physical phenomena relies upon repeated eigenanalysis of a Hamiltonian operator consisting

of a Laplacian operator discretized in spherical co-ordinates plus a surface potential. The

discrete operator has a tensor product structure from the discrete Laplacian plus a diagonal

matrix from the potential. The resulting matrix has a block structure consisting of m �

m blocks of order n . The diagonal blocks are dense and the o� diagonal blocks are

scalar multiples of the order n identity matrix. It is virtually impossible to factor this

matrix directly because the factors are dense in any ordering. We are using a distributed

memory parallel version of ARPACK together with some preconditioning ideas to solve

these problems on distributed memory machines. Encouraging computational results have

been obtained on Cray Y-MP machines and also on the Intel Delta and the CM-5. The

code has recently been ported to the CRAY T3D with very promising results. On a matrix

of order 12,800, computing the smallest eight eigenvalues using a Chebyshev polynomial

preconditioner of degree eight, the CRAY YMP executed at a rate of 290.66 Mop/s while

the T3D using the distributed-shared memory model executed at a peak rate of 1412Mop/s

(See Table 6). For details about the method and experimental results, see (Pendergast et
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Nprocs Mop/s

2 172.50

4 322.03

8 586.29

16 1006.60

32 1412.73

Table 6: Parallel ARPACK �xed-size computation rate test on T3D Shared Memory, matrix

order 12,800

al., 1994) and (Sorensen et al., 1993).

Nonsymmetric problems also arise in quantum chemistry. Researchers at University of

Washington have used the code to investigate the e�ects of the electric �eld on InAs/GaSb

and GaAs/AlxGa1�x quantum wells. ARPACK was used to �nd highly accurate solutions

to these nonsymmetric problems which de�ed solution by other means. See (Li and Kuhn,

1993) for details. Researchers at University of Massachusetts have used ARPACK to solve

eigenvalue problems arising in their FEM quantum well Kp model for strained layer super-

lattices (Baliga et al., 1994).

A �nal example of nonsymmetric eigenproblems to be discussed here arises in magneto-

hydrodynamics (MHD) involving the study of the interaction of a plasma and a magnetic

�eld. The MHD equations describe the macroscopic behavior of the plasma in the magnetic

�eld. These equations form a system of coupled nonlinear PDEs. Linear stability analysis

of the linearized MHD equations leads to a complex eigenvalue problem. Researchers at

the Institute for Plasma Physics and Utrecht University in the Netherlands have modi�ed

the codes in ARPACK to work in complex arithmetic and are using the resulting code to

obtain very accurate approximations to the eigenvalues lying on the Alfven curve. The code

is not only computes extremely accurate solutions, it does so very e�ciently in comparison

to other methods that have been tried. See (Kooper et al., 1993) for details.

There are many other applications. It is hoped that the examples briey mentioned here

indicate the versatility of the ARPACK software as well as the wide variety of eigenvalue

problems that arise.

8. Conclusions

This paper has attempted to give an overview of the numerical solution of large-scale

eigenvalue problems. Basic theory and algorithms were introduced to motivate Krylov

subspace projection methods. The focus has been on a particular variant, the Implicitly

Restarted Arnoldi Method, which has been developed into a substantial software package,

ARPACK.

There are a number of competing methods that have not been discussed here in any

detail. Two notable methods that have not been discussed are methods based on the non-

symmetric two-sided Lanczos process and methods based upon subspace iteration. At this

point, no single method appears to be viable for all problems. Certainly in the nonsym-

metric case there is no \black box" technique and it is questionable that there is one in the
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symmetric case either. A block method called ABLE based upon two-sided nonsymmetric

Lanczos is being developed by Bai, Day and Ye (1995). Software based upon subspace iter-

ation with Chbeychev acceleration has been developed by Du� and Scott (1993). Jennifer

Scott has also developed software based upon an explicitly restarted Chebyshev-Arnoldi

method (Scott, 1993). Finally, the Rational Krylov method being developed by Ruhe (1984

and 1994) is very promising for the nonsymmetric problem when a factorization of the

matrix is possible.

The computational results presented in Section 7 are due to Zdenko Tomasic and Dan

Hu. I would like to thank Rich Lehoucq for producing Figures 1{3 and for constructive

comments and discussions about this work.
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